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Abstract
The bc-system of higher rank introduced recently is examined further. It is
shown that the correlation functions are connected with certain non-Abelian
θ -functions and it is discussed how quasi-determinants arise.

PACS numbers: 02.40.Ky, 02.40.Re, 11.25.−w

1. Introduction

The usual bc-system living on Riemann surfaces of arbitrary genus is an important ingredient
in bosonic string theory [1, 2] and has been treated in a completely rigorous way by Raina in
[3, 4]. Assuming some natural physical axioms, Raina showed the existence and uniqueness
of the correlation functions and was able to rederive the explicit expressions (involving theta-
functions) using the geometry of the theta-divisor. It is important to note that one considers
in this approach not the quantum fields b, c themselves (which should be ‘operator-valued
sections’ of certain line bundles), but their correlation functions inheriting the symmetries of
the operators. A closely related cousin of the bc-sytem based on a Hermitian vector bundle
of rank r was introduced in [5] and the existence and uniqueness of the correlation functions
was established for a particular class of bundles. Using a result of [6], it was shown in [7]
that the determinants of the correlation functions are sections of pullbacks of generalized
theta-line bundles. Since the bc-system of higher rank is free, one expects that the higher
correlation functions (e.g. the four-point function) are given as some kind of determinants
of propagators, i.e. two-point functions. This ‘generalized Wick’s theorem’ seems to be out
of reach at the moment, but there does exist a relation between certain determinants of the
correlation functions. The underlying ‘addition theorem’ for non-Abelian theta-functions was
found by Fay [8] and was reformulated recently by Polishchuk [9] with the help of quasi-
determinants introduced by Gel’fand and Retakh [10, 11]. Unfortunately, these results are
too weak to yield a description of the correlation functions of the associated ‘non-Abelian
U(1)-current’ (obtained by the regularization processes from the field correlation functions);
for a discussion of the current see [7, 12]. Nevertheless, the beautiful connection between
the physical model and the mathematics associated with vector bundles on Riemann surfaces
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deserves further study. We strongly believe that a thorough understanding of the bc-system
of higher rank will shed light on a rigorous (algebro-geometric) free-field representation of
Wess–Zumino–Witten models.

The paper is structured as follows. After a brief review of the bc-system of rank one
in section 2, we describe the bc-system of higher rank in section 3. Here we establish a
connection between the correlation functions and the above-mentioned quasi-determinants.
We also derive an identity which reduces in the rank one case to the theorem of Wick. In
section 4 some conclusions are presented. For the convenience of the reader we have collected
some basic facts about quasi-determinants in the appendix.

2. The bc-system of rank one

In the following�g will be a compact Riemann surface of genus g � 2 with canonical bundle
K ≡ K�g . The set of (isomorphism classes of) holomorphic line bundles of degree d will be
denoted by Picd(�g). The canonical theta-divisor is defined by

� := {
L ∈ Picg−1(�g) | h0(�g,L) �= 0

} ⊂ Picg−1(�g). (1)

We will denote the inverse of the line bundle α by α−1.
Let α ∈ Picg−1(�g)\�, i.e. α is a line bundle of degree g−1 and satisfies h0(�g, α) = 0.

In the associated (chiral) bc-system—given by an action S ∼ ∫
b∂̄c—the field c (respectively

b) is a section of α (respectivelyK ⊗ α−1); note that there will be neither zero modes of b nor
c due to our assumption on α. The bc-system with these choices is thus a system of (twisted)
chiral fermions! The propagator 〈b(z)c(w)〉 is then a meromorphic section of the line bundle
(K ⊗ α−1)� α := π∗

1 (K ⊗ α−1)⊗π∗
2 (α) over�g ×�g having a simple pole on the diagonal

� ⊂ �g ×�g; here πi: �g ×�g → �g for i = 1, 2, is the canonical projection onto the ith
factor. Using the map φα: �g ×�g → Picg−1(�g), given by

φα(z,w) := O(z −w)⊗ α (2)

we pull back the θ line bundle from Picg−1(�g) to obtain [3, 4]

φ∗
α(O(�)) � (K ⊗ α−1)� α ⊗ O(�). (3)

Thus, the propagator is the meromorphic section ofφ∗
α(O(�))⊗O(−�). Since the normalized

section of φ∗
α(O(�)) is given by the (uniquely determined) θ -function with characteristic α,

i.e. by ϑ[α](z−w)
ϑ[α](0) , and the normalized section of O(�) is given by the prime form E(z,w), we

get the result

〈b(z)c(w)〉 = ϑ[α](z− w)

ϑ[α](0)E(z,w)
≡ Sα(z,w). (4)

In the case that α is an even theta characteristic, i.e. α⊗2 = K , the Szegö-kernel Sα—
consequently the propagator also—is antisymmetric in its arguments.

In an analogous fashion one has maps φnα: (�g ×�g)
n → Picg−1(�g), given by

φnα(z1, w1, . . . , zn,wn) := O
(

n∑
i=1

zi −
n∑
i=1

wi

)
⊗ α; (5)

note that φ1
α ≡ φα from above. The pullback of O(�) under φnα is given by [3, 4]

(φnα)
∗(O(�)) � (K ⊗ α−1)� α � · · · � (K ⊗ α−1)� α ⊗ O(Dn), (6)

whereDn is the divisor of poles and zeros

Dn :=
∑

1�i<j�2n

(−1)i+j+1�ij (7)
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and�ij is the divisor where the ith and j th coordinates coincide. Hence, the 2n-point function
〈b(z1) · · · c(wn)〉 is given as the normalized section of

(
φnα
)∗
(O(�)) ⊗ O(−Dn). Since the

first factor leads to a theta-function and the second to a product of prime forms, we obtain
an explicit expression for the 2n-point functions. Comparing the expression for the 4-point
function with the determinant of propagators (the bc-system is free, so the two expressions
should coincide according to Wick’s theorem), we obtain

ϑ[α](z1 −w1 + z2 −w2)E(z1, z2)E(w2, w1)

ϑ[α](0)E(z1, w1)E(z1, w2)E(z2, w1)E(z2, w2)
= det

(
ϑ[α](zi −wj)

ϑ[α](0)E(zi, wj )

)
(8)

which is equivalent to the trisecant identity of Fay [3, 13]. The analogous comparison of
the higher correlation functions with the corresponding determinant of propagators yields the
general Fay identity.

3. The bc-system of higher rank

Let us denote by U�g (r, d) the moduli space of (isomorphism classes of ) stable vector bundles
of rank r and degree d on �g; recall that a bundle F on a Riemann surface is called stable if
µ(G) < µ(F) for every proper subbundleG ⊂ F (where µ(F) := d

r
for a bundle F of rank r

and degree d ). In the particular case d = r(g − 1) the non-Abelian theta-divisor is defined in
close analogy to (1) by

�r := {
F ∈ U�g(r, r(g − 1)) | h0(�g, F ) �= 0

} ⊂ U�g (r, r(g − 1)).

We will denote the dual bundle of F by F∨ and the highest nonvanishing exterior power of a
vector bundle F by det(F ).

Recall [5, 7] that the bc-system of higher rank (which we will call the bcr -system in the
following) associated with a holomorphic (Hermitian) vector bundle E of rank r is defined by
the action

S ∼
∫
�g

b∂̄Ec;

here the field c (resp. b) is a section of E (resp. K ⊗ E∨) and ∂̄E is the Dolbeault-operator
acting on the smooth sections of E; in the case r = 1 we denote the corresponding line bundle
by α. As mentioned in the introduction, the 2n-point functions 〈b(z1)c(w1) · · · b(zn)c(wn)〉
exist and are uniquely determined if we choose E from the complement of the non-Abelian
theta-divisor, i.e. if E ∈ U�g(r, r(g − 1)) \�r . Let us denote by � one of the 22g

theta-characteristics satisfying �⊗2 � K (since the diagonal appears only in the form O(�),
there should be no confusion about the meaning of �). Tensoring with � may be regarded
as a map � ⊗ − : U�g (r, 0) → U�g (r, r(g − 1)), so that we can pull back the non-Abelian
theta-divisor:

�∗�r := {
χ ∈ U�g(r, 0) | h0(�g,�⊗ χ)) > 0

} ⊂ U�g(r, 0). (9)

Consequently, if χ ∈ U�g (r, 0)\�∗�r , then E ≡ � ⊗ χ ∈ U�g(r, r(g − 1))\�r is of the
type considered in the bcr -system. Thus, the field c (resp. b) is a section of � ⊗ χ (resp.
�⊗χ∨), i.e. a χ-valued (resp. χ∨-valued) spinor and we interpret the bcr -system in this case
as a system of chiral fermions of rank r.

The 2n-point functions are sections of the vector bundle p∗
1(K ⊗ E∨)⊗ p∗

2(E)⊗ · · · ⊗
p∗

2n−1(K ⊗ E∨) ⊗ p∗
2n(E) over �2n

g := �g × · · · × �g (2n times); here pi : �2n
g → �g are

the canonical projections onto the ith factor. In particular, the 2-point function 〈b(z)c(w)〉 is
given by the non-Abelian Szegö-kernel SE(z,w) of Fay [5, 8],

〈b(z)c(w)〉 = SE(z,w). (10)
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It is given locally by an r × r-matrix and has an expansion

SE(z,w) = Ir

z −w
+ a0(w;E) + a1(w;E)(z−w) + · · · , (11)

where the coefficients ai(·;E) are described in [8]. Unfortunately, one has only very little
explicit information about them. For the higher correlation functions the situation is even
worse. Here one has neither a direct representation (in contrast to the rank one case) nor a
‘generalized Wick’s theorem’ which would allow a representation of the higher correlation
functions as certain ‘determinants’ of propagators.

Let us consider the geometric aspects of the bcr-system following [7]. For E ∈
U�g(r, r(g − 1))\�r there is a map

φE : �g ×�g → U�g (r, r(g − 1)) (12)

defined in close analogy to (2) by

φE(z,w) := O(z −w)⊗ E.

The pullback of the non-Abelian theta-line bundle O(�r) is given in complete analogy to (3)
by [6]:

φ∗
E(O(�r)) � (K⊗r ⊗ det(E∨))� det(E)⊗ O(�)⊗r . (13)

Hence, the determinant of the propagator is the meromorphic section of the line bundle
φ∗
E(O(�r)) ⊗ O(−�)⊗r . In the rank one case we could use the fact that a section of
φ∗
α(O(�)) is given by a theta-function to obtain explicit expressions. The one-dimensionality

of the space of theta-functions (of level one) is expressed by h0
(
Picg−1(�g),O(�)

) = 1. It
is a fundamental result of [14] (and was essential for the mathematical proofs of the Verlinde
formula) that this can be generalized to ‘non-Abelian theta-functions’, i.e. we have

h0
(U�g (r, r(g − 1)),O(�r)

) = 1.

Let us denote the uniquely determined holomorphic section of O(�r) by ϑr(·). Then ϑr ◦ φE
is a holomophic section of φ∗

E(O(�r)) over�g ×�g and one has

ϑr ◦ φE(z,w) = ϑr(φE(z,w)) = ϑr(E ⊗ O(z −w)).

To obtain a close analogy to the rank one case, we define the corresponding non-Abelian
theta-function (‘with characteristic E’) by

ϑr [E](z− w) := ϑr(E ⊗ O(z −w)) (14)

and call it the non-Abelian theta-function associated with E ∈ U�g (r, r(g− 1))\�r . Note that
this is a rather formal definition, since one has at the moment no explicit formulae for these
non-Abelian theta-functions. Let us nevertheless proceed. The determinant of the propagator
is the meromorphic section of φ∗

E(O(�r))⊗O(−�)⊗r . Since the uniquely determined section
of O(�) is the prime form E(z,w), we may thus write

det(〈b(z)c(w)〉) = ϑr [E](z−w)

ϑr [E](0)E(z,w)r
. (15)

Let us now consider the 2n-point function 〈b(z1)c(w1) · · · b(zn)c(wn)〉, which is a
meromorphic section of the vector bundle (K ⊗ E∨) � E � · · · � (K ⊗ E∨) � E having
simple poles (resp. zeros) whenever two arguments of different (resp. same) types coincide.
In close analogy to the rank one case considered in (5) we define a map φnE : (�g ×�g)

n −→
U�g(r, r(g − 1)) by setting

φnE(z1, w1, . . . , zn,wn) := O
(

n∑
i=1

zi −
n∑
i=1

wi

)
⊗E;
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note that again φ1
E ≡ φE . According to [6], the pullback of the non-Abelian theta-line bundle

is then given in analogy to (6) by(
φnE
)∗
(O(�r)) � (K⊗r ⊗ det(E∨))� det(E)� · · ·

· · · � (K⊗r ⊗ det(E∨))� det(E)⊗ O(Dn)
⊗r

where Dn is the divisor defined in (7) and there are n factors of (K⊗r ⊗ det(E∨))� det(E).
Note that this reduces to (13) for n = 1 since D1 = �12 ≡ �. Thus, the (appropriately
interpreted) determinant of the 2n-point function is a section of

(
φnE
)∗
(O(�r))⊗O(−Dn)

⊗r .
Generalizing the construction from above,ϑr ◦ φnE is the holomorphic section of

(
φnE
)∗
(O(�r))

on (�g ×�g)
n. Thus,

ϑr ◦ φnE(z1, w1, . . . , zn,wn) = ϑr
(
φnE(z1, . . . , wn)

) = ϑr

(
E ⊗ O

(
n∑
i=1

zi −
n∑
i=1

wi

))
.

In close analogy to the case n = 1 of (14) we write

ϑr [E](z1 −w1 + · · · + zn −wn) := ϑr ◦ φnE(z1, w1, . . . , zn,wn)

and abbreviate this also by

ϑr [E]

(
n∑
i=1

(zi −wi)

)
≡ ϑr [E](z1 −w1 + · · · + zn −wn).

Therefore, the determinant of the 2n-point function 〈b(z1)c(w1) · · · b(zn)c(wn)〉 is given
formally by

detn(〈b(z1) · · · c(wn)〉) =
ϑr [E]

(
n∑
i=1
(zi −wi)

)
ϑr [E](0)




∏
1�i<j�n

E(zi, zj )E(wj ,wi)∏
1�i,j�n

E(zi, wj )



r

. (16)

Here we have introduced a subscript to denote the difference from the usual determinant; note
that det1 is the usual determinant, i.e. det1 ≡ det. Before we reformulate these expressions,
we return to the rank one case; we thus assume that α ∈ Picg−1(�g)\�. We also
change the notation slightly (for a better comparison with [9, 8]) and label the points as
z0, w0, z1, w1, . . . , zn,wn; so, we consider the 2(n + 1)-point function of the bc-system
associated with α. Comparing (2) and (5) we find

φ2
α(z0, w0, z1, w1) ≡ α ⊗ O(z0 −w0 + z1 − w1)

= α(z1 −w1)⊗ O(z0 −w0)

≡ φα(z1−w1)(z0, w0) (17)

where we have used the abbreviation α(z1 − w1) := α ⊗ O(z1 − w1). This implies for the
pullbacks of the theta-line bundle(

φ2
α

)∗
(O(�))|(z0,w0,z1,w1) = O(�)|φ2

α(z0,w0,z1,w1)

(17)= O(�)|φα(z1−w1)(z0,w0)

= φ∗
α(z1−w1)

(O(�))|(z0,w0).

The corresponding holomorphic section of
(
φ2
α

)∗
(O(�)) in (z0, w0, z1, w1) is given by

ϑ[α](z0 −w0 + z1 −w1), so that we may write

ϑ[α](z0 −w0 + z1 −w1) = ϑ[α(z1 −w1)](z0 − w0). (18)
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The right-hand side appears in the Szegö-kernel associated with α(z1 −w1):

Sα(z1−w1)(z0, w0) ≡ ϑ[α(z1 −w1)](z0 −w0)

ϑ[α(z1 −w1)](0)E(z0, w0)
. (19)

Using (18) we can rewrite the left-hand side of (8) to obtain the following identity:

Sα(z1−w1)(z0, w0)
E(z0, z1)E(w0, w1)

E(z0, w1)E(w0, z1)
= det(Sα(zi, wj ))

Sα(z1, w1)
. (20)

Let us introduce a concise notation. Define the 2 × 2-matrix

Sα(z0, w0; z1, w1) :=
(
Sα(z0, w0) Sα(z0, w1)

Sα(z1, w0) Sα(z1, w1)

)
(21)

with commutative entries Sα(zi, wj ). Its 00-quasi-determinant can be written according to
(A3) as

|Sα(z0, w0; z1, w1)|00 = det Sα(z0, w0; z1, w1)

detSα(z1, w1)
≡ det(Sα(zi, wj ))

Sα(z1, w1)
.

Combining this with (20), we have shown the following proposition.

Proposition 1. Let α ∈ Picg−1(�g)\�. Wick’s theorem holds for the bc-system associated
with α if and only if the following identity is satisfied:

Sα(z1−w1)(z0, w0)
E(z0, z1)E(w0, w1)

E(z0, w1)E(w0, z1)
= |Sα(z0, w0; z1, w1)|00. (22)

This identity is equivalent to the trisecant identity of Fay.

As mentioned in the introduction, the equivalence of this identity to the trisecant identity
of Fay is due to Polishchuk [9], and the equivalence of Wick’s theorem to the trisecant identity
is due to Raina [3, 4] (this connection was noticed before, see, e.g. [15–17]). The general
identity is obtained as follows. Let {z0, z1, . . . , zn} and {w0, w1, . . . , wn} be disjoint sets of
points on �g and consider the bundle

α

(
n∑
i=1

(zi − wi)

)
:= α ⊗ O

(
n∑
i=1

(zi − wi)

)
.

If the points have been chosen in such a way that h0
(
�g, α

(∑n
i=1(zi −wi)

)) = 0, then the
associated Szegö-kernel Sα(∑n

i=1(zi−wi))(z0, w0) (generalizing the expression (19)) exists and
can be written with the help of (18) as some kind of 2(n + 1)-point function. The corresponding
(n + 1)× (n + 1)-matrix of propagators is defined by

Sα(z0, w0; {zi}, {wi}) :=



Sα(z0, w0) · · · Sα(z0, wn)

...
...

Sα(zn,w0) · · · Sα(zn,wn)


 (23)

and the identity generalizing (22) is

Sα(
∑n

i=1(zi−wi))(z0, w0)

n∏
i=1

E(z0, zi)E(w0, wi)

E(z0, wi)E(w0, zi)
= |Sα(z0, w0; {zi}, {wi})|00 (24)

where the quasi-determinant of a matrix of higher rank is defined inductively in (A1).
Now, we come back to the case of higher rank. As mentioned before, the identity (24)

was generalized by Fay (see (2.16)′ in [8]) to the case of vector bundles of higher rank and
was formulated with the help of quasi-determinants by Polishchuk [9]. More precisely, one
has the following theorem.
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Theorem 2 (Fay, Polishchuk). Let E ∈ U�g(r, r(g − 1)) \�r and let {z0, z1, . . . , zn}
and {w0, w1, . . . , wn} be disjoint sets of points on �g such that E

(∑n
i=1(zi − wi)

) ∈
U�g(r, r(g − 1))\�r (i.e. h0

(
�g,E

(∑n
i=1(zi − wi)

)) = 0). Let SE(z0, w0; {zi}, {wi}) be
the (n + 1) × (n + 1)-matrix analogous to (23) but this time with noncommuting entries
SE(zi, wj ). Then the following identity holds:

SE(
∑n

i=1(zi−wi))(z0, w0)

n∏
i=1

E(z0, zi)E(w0, wi)

E(z0, wi)E(w0, zi)
= |SE(z0, w0; {zi}, {wi})|00. (25)

This identity reduces in the rank one case to the identity (24) which is equivalent to the
trisecant identity of Fay, so, in this sense, (25) represents a ‘matrix-valued trisecant identity’.
It should be stressed that the entries SE(zi, wj ) are r × r-matrices. For other approaches to
addition formulae for non-Abelian theta-functions see [6, 18].

Taking the determinant of the right-hand side of (25) yields

det(|SE(z0, w0; {zi}, {wi})|00). (26)

On the other hand, taking the determinant of the left-hand side of (25) yields

det
(
SE(

∑n
i=1(zi−wi))(z0, w0)

) ( n∏
i=1

E(z0, zi)E(w0, wi)

E(z0, wi)E(w0, zi)

)r
. (27)

Combining (10) and (15), one finds that the determinant of the non-Abelian Szegö-kernel is
given by a non-Abelian theta-function. In the case at hand one obtains the analogon to (19),
i.e.

det
(
SE(

∑n
i=1(zi−wi))(z0, w0)

) = ϑr
[
E
(∑n

i=1(zi −wi)
)]
(z0 − w0)

ϑr
[
E
(∑n

i=1(zi −wi)
)]
(0)E(z0, w0)r

.

Since the maps φnE are defined in a completely analogous way to the maps φnα of the rank one
case, one consequently obtains an equation analogous to (17) and finally to (18), i.e.

ϑr

[
E

(
n∑
i=1

(zi −wi)

)]
(z0 −w0) = ϑr [E]

(
n∑
i=0

(zi − wi)

)
.

Therefore, we have found for the determinant of the left-hand side of (25) the expression

ϑr [E]

(
n∑
i=0
(zi − wi)

)

ϑr [E]

(
n∑
i=1
(zi −wi)

)
E(z0, w0)r

(
n∏
i=1

E(z0, zi)E(w0, wi)

E(z0, wi)E(w0, zi)

)r
.

Using (16) we may now express the non-Abelian theta-functions through the determinants of
the correlation functions of the bcr -system associated with E. The prime forms cancel and all
that remains is

detn+1(〈b(z0)c(w0)b(z1)c(w1) · · · b(zn)c(wn)〉)
detn(〈b(z1)c(w1) · · · b(zn)c(wn)〉) . (28)

Thus, by comparing (26) and (28), we show the following proposition.

Proposition 3. Under the assumptions of theorem 2 one obtains by taking the determinants
on both sides of (25) the following identity for the correlation functions of the bcr-system
associated with E:
detn+1(〈b(z0)c(w0)b(z1)c(w1) · · · b(zn)c(wn)〉)

detn(〈b(z1)c(w1) · · · b(zn)c(wn)〉) = det(|SE(z0, w0; {zi}, {wi})|00). (29)
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In the rank one case there are no determinants and the quasi-determinant on the
right-hand side is—according to (A3)—the quotient of the determinant of the entire
(n + 1) × (n + 1)-matrix Sα(z0, w0; {zi}, {wi}) (which is in this case the 2(n + 1)-point
function 〈b(z0) · · · c(wn)〉 due to Wick’s theorem) and the determinant of the n × n-matrix
Sα(z1, w1; {z2, . . . , zn}, {w2, . . . , wn}) (which is the 2n-point function 〈b(z1) · · · c(wn)〉). This
verifies the identity (29) in the rank one case.

The identity (29) may be used to express the 2(n + 1)-point function through a 2n-point
function, which may be expressed through a 2(n − 1)-point function, and so on. Thus, we
may proceed inductively and express the higher correlation function as a kind of product
of determinants of quasi-determinants. Let us introduce a convenient abbreviation for the
(n + 1 − j)× (n + 1 − j)-matrices appearing in the following consideration:

SE(zj ,wj ; zj ,wj ) := SE(zj ,wj ; {zj+1, . . . , zn}, {wj+1, . . . , wn}). (30)

Note that these matrices are exactly the (n + 1 − j)× (n + 1 − j)-matrices in the lower right
corner of the (n + 1)× (n + 1)-matrix SE(z0, w0; z0,w0). With this notation we obtain

detn+1(〈b(z0) · · · c(wn)〉)
= det{|SE(z0, w0; z0,w0)|00} detn(〈b(z1) · · · c(wn)〉)
= det{|SE(z0, w0; z0,w0)|00} det{|SE(z1, w1; z1,w1)|11}

× detn−1(〈b(z2) · · · c(wn)〉)
...

=
(
n−1∏
k=0

det{|SE(zk,wk; zk,wk)|kk}
)

det(〈b(zn)c(wn)〉).

Since 〈b(zn)c(wn)〉 = SE(zn,wn) and since the quasi-determinant of a 1 ×1-matrix is just the
corresponding entry, it makes sense to define for the last factor

det{|SE(zn,wn; zn,wn)|nn} := det{SE(zn,wn)} ≡ det(〈b(zn)c(wn)〉). (31)

Collecting the above results, we may formulate the following theorem.

Theorem 4. Let the assumptions be as in theorem 2. Using the notation (30) and the
convention (31), the determinants of the correlation functions of the bcr-system associated
with E can be represented as

detn+1(〈b(z0)c(w0) · · · b(zn)c(wn)〉) =
n∏
k=0

det{|SE(zk,wk; zk,wk)|kk}. (32)

In the rank one case, i.e. for α ∈ Picg−1(�g)\�, this identity reduces to the usual Wick
theorem:

〈b(z0)c(w0) · · · b(zn)c(wn)〉 = det Sα(z0, w0; z0,w0).

Proof. The first equation has already been shown; the reduction in the rank one case remains
to be shown. Since in this case there are no determinants, (32) reduces to

〈b(z0)c(w0) · · · b(zn)c(wn)〉 =
n∏
k=0

|Sα(zk,wk; zk,wk)|kk.

Note that Sα(z0, w0; z0,w0) is the (n+ 1)× (n+ 1)-matrix we started from; let us abbreviate it
as T = (tij ). The factor belonging to k = 0 is therefore |T |00. The matrix Sα(z1, w1; z1,w1)

arises from Sα(z0, w0; z0,w0) by deleting the zeroth row and the zeroth column, so that the
factor belonging to k = 1 is given by |T 0,0|11. The next matrix Sα(z2, w2; z2,w2) arises from
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Sα(z0, w0; z0,w0) by deleting the first two rows and columns, so that the factor belonging to
k = 2 is given by |T 01,01|22. So, the right-hand side is given by

|T |00|T 0,0|11|T 01,01|22 · · · |T 012···n−2,012···n−2|n−1n−1tnn.

According to [10, 11], this is precisely the usual determinant of T! Thus, substituting back
T ≡ Sα(z0, w0; z0,w0), one obtains the identity

〈b(z0)c(w0) · · · b(zn)c(wn)〉 = det Sα(z0, w0; z0,w0),

which is exactly the usual form of Wick’s theorem. �

Note that we always ‘expanded’ the matrices in the upper-left corner. Of course, we
could have expanded the large matrix in completely different ways. Let us consider first
the case n = 1 and let us start with the rank one case. Abbreviate A = Sα(z0, w0; z1, w1),
so that A = (aij )1�i,j�2 with aij = Sα(zi−1, wj−1). Due to (A3) one has for arbitrary
1 � i, j, k, l � 2 the identity (−1)i+j |A|ij detAij = (−1)k+l|A|kl detAkl , coming from the
different expansions of the original matrix A. Since we always have in our application i = j

and k = l, essentially one relation remains, namely |A|11a22 = |A|22a11, i.e.
|Sα(z0, w0; z1, w1)|00

Sα(z0, w0)
= |Sα(z0, w0; z1, w1)|11

Sα(z1, w1)
.

This identity comes in a more physical interpretation from the two different expansions of the
4-point function of the bc-system associated with α. We expect that a similar relation holds
in higher rank, provided one takes the appropriate determinants. An exchange z0 ↔ z1 and
w0 ↔ w1 yields instead of (25) for n = 1 the identity

SE(z0−w0)(z1, w1)
E(z1, z0)E(w1, w0)

E(z1, w0)E(w1, z0)
= |SE(z0, w0; z1, w1)|11.

Taking the determinant gives as above
det2(〈b(z0)c(w0)b(z1)c(w1)〉)

det(〈b(z0)c(w0)〉) = det{|SE(z0, w0; z1, w1)|11}.
This is a second representation for the determinant of the 4-point function. A comparison with
the case n = 1 of (29) shows that indeed

det{|SE(z0, w0; z1, w1)|00}
detSE(z0, w0)

= det{|SE(z0, w0; z1, w1)|11}
detSE(z1, w1)

. (33)

In the general case we abbreviate as above T ≡ SE(z0, w0; z0,w0). The right-hand side of
(32) can then be written as (see the proof of theorem 4)

det{|T |00} det
{|T 0,0|11

}
det
{|T 01,01|22

} · · · det
{|T 01···n−1,01···n−1|nn

}
where we have used the obvious convention for the last factor. Therefore, (32) can be written
in the form

detn+1(〈b(z0)c(w0) · · · b(zn)c(wn)〉) =
n∏
k=0

det
{|T 0···k−1,0···k−1|kk

}
(34)

where the factor corresponding to k = 0 is just det{|T |00}. In terms of the original
matrix T we have used the 0th, 1st, 2nd, . . . , nth diagonal element to expand. Now, let

σ =
(

0 1 · · · n

σ (0) σ (1) · · · σ (n)

)
∈ Sn+1 be an arbitrary permutation. Then we can also expand first

along the σ(0)th element, then the σ(1)st element, and so on. Instead of (34) we then obtain
the identity

detn+1(〈b(z0)c(w0) · · · b(zn)c(wn)〉) =
n∏
k=0

det
{|T σk,σk |σ (k)σ (k)} (35)
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where we have abbreviated σk := σ(0) · · · σ(k − 1). Note that this reduces to (34) in the
particular case σ = id.

Proposition 5. Let the assumptions be as in theorem 4 and let us abbreviate T ≡
SE(z0, w0; z0,w0). For two arbitrary permutations σ, τ ∈ Sn+1 one has the following identity
(where again σk := σ(0) · · ·σ(k − 1) and similarly for τ ):

n∏
k=0

det
{|T σk,σk |σ (k)σ (k)} =

n∏
k=0

det
{|T τk,τk |τ(k)τ(k)}. (36)

Proof. According to (35), both sides are equal to the determinant of the 2(n + 1)-point
function of the bcr -system. �

In the case n = 1 there are only two elements in S2: the identity σ = id and the transposition

τ =
(

0 1
1 0

)
. The identity (36) then reduces to (33).

4. Conclusion

In this paper the bc-system of higher rank was considered further, in particular its connection to
the quasi-determinants of Gel’fand and Retakh. The determinants of the correlation functions
were expressed through non-Abelian theta-functions, showing a geometrical connection to a
particular Wess–Zumino–Witten (WZW) model (the non-Abelian theta-functions are closely
related to the spaces of conformal blocks of WZW models, see, e.g., [19]). Although a
‘generalized Wick’s theorem’ is still lacking, one may regard theorem (4) as a very weak
version of it (and, hopefully, as a first step in the right direction). If one had this identity one
could calculate with its help the higher correlation functions of the current and the energy–
momentum tensor, thus allowing a better comparison to WZW models; for the current of
the bc-system of higher rank see [7, 12]. Recall that in the rank one case Wick’s theorem
is equivalent to the trisecant identity of Fay [3, 4] which one may view as the mathematical
counterpart to the Abelian bosonization [15–17]. We are convinced that a further study will
show a very close connection between the sought for ‘Wick’s theorem of higher rank’, addition
laws of non-Abelian theta-functions and WZW models (i.e. non-Abelian bosonization [20]).

Appendix

Here we have collected some basic facts about quasi-determinants which were introduced by
Gel’fand and Retakh [10, 11]. LetA = (aij ) with 1 � i, j � n be a n× n-matrix with formal
noncommutative entries. For 1 � p, q � nwe define inductively n2 quasi-determinants |A|pq
which are rational in the entries aij . In the case n = 1 we simply set |A|11 := a11. Denote the
(n− 1)× (n− 1)-matrix which results by deleting the kth row and the lth column from A by
Akl . Then we define

|A|pq := apq −
∑
i �=p
j �=q

apj |Apq|−1
ij aiq . (A1)

Let us consider as an example a 2 ×2-matrixA =
(
a11 a12
a21 a22

)
. The four quasi-determinants are

|A|11 = a11 − a12a
−1
22 a21 |A|12 = a12 − a11a

−1
21 a22

|A|21 = a21 − a22a
−1
12 a11 |A|22 = a22 − a21a

−1
11 a12.

(A2)
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In the case that all variables are commutative, one obtains the following connection to the
usual determinant:

|A|pq = (−1)p+q detA

detApq
. (A3)

This may be checked easily by hand in the case of a 2 × 2-matrix using (A2). If we delete
the k1th and k2th rows and the l1th and l2th columns from A, we will denote the resulting
(n − 2) × (n − 2)-matrix by Ak1k2,l1l2 . More generally, if we delete the k1th, . . . , kr th rows
and the l1th, . . . , lr th columns of A, the resulting (n− r)× (n− r)-matrix will be denoted by
Ak1···kr ,l1···lr .

As stressed in [10, 11], these quasi-determinants have certain homological properties
(which the usual determinant has not). In particular, if the aij : Vj → Vi are invertible
morphisms in an additive category allowing rational functions in the morphisms of objects,
the quasi-determinant |A|pq is a morphism from Vq to Vp; this may be checked immediately
in the case n = 2 using (A2). If one does not require that all quasi-deteminants exist at the
same time, one may allow that some of the entries aij are not invertible; e.g. if one is interested
only in |A|11, then only a22 has to be invertible. Considering as objects Vj vector spaces of
the dimensions dj (so that the morphisms aij are di × dj matrices), we may allow di �= dj .
Much more information about quasi-determinants can be found in [10, 11].
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